Towards recommender systems based on a fuzzy preference aggregation

نویسندگان

  • Samia Boulkrinat
  • Allel HadjAli
  • Aïcha Mokhtari
چکیده

An approach to deal with user preference relations, instead of absolute ratings, in recommender systems is discussed. User’s preferences are then ratings expressed qualitatively by using linguistic terms. This is a suitable technique when preferences are imprecise and vague. On the other hand, to avoid that the overall item rating may hide the users’ preferences heterogeneity and mislead the system when predicting the items that users are interested in, multi-criteria ratings are used as well. User’s items ratings are represented through a preference graph which highlight better items relationships. Similarity between users is performed on the basis of the similarity of their preference relations which can better capture similar users’ ratings patterns. Some preliminary results shows that, our approach enhances the classical recommender system precision thanks to the graphs used for prediction which are more informative and reflect user’s initial ratings relations in a better way.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new last aggregation compromise solution approach based on TOPSIS method with hesitant fuzzy setting to energy policy evaluation

Utilizing renewable energies is identified as one of significant issues for economical and social significance in future human life. Thus, choosing the best renewable energy among renewable energy candidates is more important. To address the issue, multi-criteria group decision making (MCGDM) methods with imprecise information could be employed to solve these problems. The aim of this paper is ...

متن کامل

A NOVEL FUZZY-BASED SIMILARITY MEASURE FOR COLLABORATIVE FILTERING TO ALLEVIATE THE SPARSITY PROBLEM

Memory-based collaborative filtering is the most popular approach to build recommender systems. Despite its success in many applications, it still suffers from several major limitations, including data sparsity. Sparse data affect the quality of the user similarity measurement and consequently the quality of the recommender system. In this paper, we propose a novel user similarity measure based...

متن کامل

Representation, similarity measures and aggregation methods using fuzzy sets for content-based recommender systems

Representation of features of items and user feedback, and reasoning about their relationships are major problems in recommender systems. This is because item features and user feedback are subjective, imprecise and vague. The paper presents a fuzzy set theoretic method (FTM) for recommender systems that handles the non-stochastic uncertainty induced from subjectivity, vagueness and imprecision...

متن کامل

A social recommender system based on matrix factorization considering dynamics of user preferences

With the expansion of social networks, the use of recommender systems in these networks has attracted considerable attention. Recommender systems have become an important tool for alleviating the information that overload problem of users by providing personalized recommendations to a user who might like based on past preferences or observed behavior about one or various items. In these systems...

متن کامل

Improving Accuracy of Recommender Systems using Social Network Information and Longitudinal Data

The rapid development of technology, the Internet, and the development of electronic commerce have led to the emergence of recommender systems. These systems will assist the users in finding and selecting their desired items. The accuracy of the advice in recommender systems is one of the main challenges of these systems. Regarding the fuzzy systems capabilities in determining the borders of us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013